MakeItFrom.com
Menu (ESC)

C65400 Bronze vs. Grade 24 Titanium

C65400 bronze belongs to the copper alloys classification, while grade 24 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C65400 bronze and the bottom bar is grade 24 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 2.6 to 47
11
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 43
40
Shear Strength, MPa 350 to 530
610
Tensile Strength: Ultimate (UTS), MPa 500 to 1060
1010
Tensile Strength: Yield (Proof), MPa 170 to 910
940

Thermal Properties

Latent Heat of Fusion, J/g 260
410
Maximum Temperature: Mechanical, °C 200
340
Melting Completion (Liquidus), °C 1020
1610
Melting Onset (Solidus), °C 960
1560
Specific Heat Capacity, J/kg-K 400
560
Thermal Conductivity, W/m-K 36
7.1
Thermal Expansion, µm/m-K 17
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
2.0

Otherwise Unclassified Properties

Density, g/cm3 8.7
4.5
Embodied Carbon, kg CO2/kg material 2.8
43
Embodied Energy, MJ/kg 45
710
Embodied Water, L/kg 310
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 480
110
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 3640
4160
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 19
35
Strength to Weight: Axial, points 16 to 34
63
Strength to Weight: Bending, points 16 to 27
50
Thermal Diffusivity, mm2/s 10
2.9
Thermal Shock Resistance, points 18 to 39
72

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0.010 to 0.12
0
Copper (Cu), % 93.8 to 96.1
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0
0 to 0.4
Lead (Pb), % 0 to 0.050
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Palladium (Pd), % 0
0.040 to 0.080
Silicon (Si), % 2.7 to 3.4
0
Tin (Sn), % 1.2 to 1.9
0
Titanium (Ti), % 0
87.5 to 91
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.2
0 to 0.4