MakeItFrom.com
Menu (ESC)

C66300 Brass vs. S44537 Stainless Steel

C66300 brass belongs to the copper alloys classification, while S44537 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C66300 brass and the bottom bar is S44537 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.3 to 22
21
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 42
79
Shear Strength, MPa 290 to 470
320
Tensile Strength: Ultimate (UTS), MPa 460 to 810
510
Tensile Strength: Yield (Proof), MPa 400 to 800
360

Thermal Properties

Latent Heat of Fusion, J/g 200
290
Maximum Temperature: Mechanical, °C 180
1000
Melting Completion (Liquidus), °C 1050
1480
Melting Onset (Solidus), °C 1000
1430
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 110
21
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 26
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 29
19
Density, g/cm3 8.6
7.9
Embodied Carbon, kg CO2/kg material 2.8
3.4
Embodied Energy, MJ/kg 46
50
Embodied Water, L/kg 320
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 98
95
Resilience: Unit (Modulus of Resilience), kJ/m3 710 to 2850
320
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 15 to 26
18
Strength to Weight: Bending, points 15 to 22
18
Thermal Diffusivity, mm2/s 32
5.6
Thermal Shock Resistance, points 16 to 28
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20 to 24
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 84.5 to 87.5
0 to 0.5
Iron (Fe), % 1.4 to 2.4
69 to 78.6
Lanthanum (La), % 0
0.040 to 0.2
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 0.8
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0 to 0.35
0 to 0.050
Silicon (Si), % 0
0.1 to 0.6
Sulfur (S), % 0
0 to 0.0060
Tin (Sn), % 1.5 to 3.0
0
Titanium (Ti), % 0
0.020 to 0.2
Tungsten (W), % 0
1.0 to 3.0
Zinc (Zn), % 6.0 to 12.8
0
Residuals, % 0 to 0.5
0