MakeItFrom.com
Menu (ESC)

C67300 Bronze vs. ASTM A182 Grade F22V

C67300 bronze belongs to the copper alloys classification, while ASTM A182 grade F22V belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C67300 bronze and the bottom bar is ASTM A182 grade F22V.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 12
21
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 41
74
Shear Strength, MPa 300
420
Tensile Strength: Ultimate (UTS), MPa 500
670
Tensile Strength: Yield (Proof), MPa 340
460

Thermal Properties

Latent Heat of Fusion, J/g 190
250
Maximum Temperature: Mechanical, °C 130
460
Melting Completion (Liquidus), °C 870
1470
Melting Onset (Solidus), °C 830
1430
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 95
39
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 25
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 23
4.2
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 2.7
2.5
Embodied Energy, MJ/kg 46
35
Embodied Water, L/kg 320
61

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55
120
Resilience: Unit (Modulus of Resilience), kJ/m3 550
570
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 17
24
Strength to Weight: Bending, points 17
22
Thermal Diffusivity, mm2/s 30
11
Thermal Shock Resistance, points 16
19

Alloy Composition

Aluminum (Al), % 0 to 0.25
0
Boron (B), % 0
0 to 0.0020
Calcium (Ca), % 0
0 to 0.015
Carbon (C), % 0
0.11 to 0.15
Chromium (Cr), % 0
2.0 to 2.5
Copper (Cu), % 58 to 63
0 to 0.2
Iron (Fe), % 0 to 0.5
94.6 to 96.4
Lead (Pb), % 0.4 to 3.0
0
Manganese (Mn), % 2.0 to 3.5
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0 to 0.25
0 to 0.25
Niobium (Nb), % 0
0 to 0.070
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0.5 to 1.5
0 to 0.1
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.3
0
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0.25 to 0.35
Zinc (Zn), % 27.2 to 39.1
0
Residuals, % 0 to 0.5
0