MakeItFrom.com
Menu (ESC)

C67300 Bronze vs. EN 1.0038 Steel

C67300 bronze belongs to the copper alloys classification, while EN 1.0038 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C67300 bronze and the bottom bar is EN 1.0038 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 12
23 to 25
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 41
73
Shear Strength, MPa 300
240 to 270
Tensile Strength: Ultimate (UTS), MPa 500
380 to 430
Tensile Strength: Yield (Proof), MPa 340
200 to 220

Thermal Properties

Latent Heat of Fusion, J/g 190
250
Maximum Temperature: Mechanical, °C 130
400
Melting Completion (Liquidus), °C 870
1460
Melting Onset (Solidus), °C 830
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 95
49
Thermal Expansion, µm/m-K 20
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 25
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 23
2.1
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.4
Embodied Energy, MJ/kg 46
19
Embodied Water, L/kg 320
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55
72 to 88
Resilience: Unit (Modulus of Resilience), kJ/m3 550
110 to 130
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 17
13 to 15
Strength to Weight: Bending, points 17
15 to 16
Thermal Diffusivity, mm2/s 30
13
Thermal Shock Resistance, points 16
12 to 13

Alloy Composition

Aluminum (Al), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.23
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 58 to 63
0 to 0.6
Iron (Fe), % 0 to 0.5
97.1 to 100
Lead (Pb), % 0.4 to 3.0
0
Manganese (Mn), % 2.0 to 3.5
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 0 to 0.25
0 to 0.3
Nitrogen (N), % 0
0 to 0.014
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.5 to 1.5
0 to 0.55
Sulfur (S), % 0
0 to 0.045
Tin (Sn), % 0 to 0.3
0
Zinc (Zn), % 27.2 to 39.1
0
Residuals, % 0 to 0.5
0