MakeItFrom.com
Menu (ESC)

C67300 Bronze vs. EN 1.4613 Stainless Steel

C67300 bronze belongs to the copper alloys classification, while EN 1.4613 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C67300 bronze and the bottom bar is EN 1.4613 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 12
21
Poisson's Ratio 0.31
0.27
Shear Modulus, GPa 41
79
Shear Strength, MPa 300
330
Tensile Strength: Ultimate (UTS), MPa 500
530
Tensile Strength: Yield (Proof), MPa 340
280

Thermal Properties

Latent Heat of Fusion, J/g 190
290
Maximum Temperature: Mechanical, °C 130
1050
Melting Completion (Liquidus), °C 870
1430
Melting Onset (Solidus), °C 830
1390
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 95
19
Thermal Expansion, µm/m-K 20
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 25
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 23
12
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.6
Embodied Energy, MJ/kg 46
38
Embodied Water, L/kg 320
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55
91
Resilience: Unit (Modulus of Resilience), kJ/m3 550
190
Stiffness to Weight: Axial, points 7.4
15
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 17
19
Strength to Weight: Bending, points 17
19
Thermal Diffusivity, mm2/s 30
5.2
Thermal Shock Resistance, points 16
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.25
0 to 0.050
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
22 to 25
Copper (Cu), % 58 to 63
0 to 0.5
Iron (Fe), % 0 to 0.5
70.3 to 77.8
Lead (Pb), % 0.4 to 3.0
0
Manganese (Mn), % 2.0 to 3.5
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.25
0 to 0.5
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0.5 to 1.5
0 to 1.0
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0 to 0.3
0
Titanium (Ti), % 0
0.2 to 1.0
Zinc (Zn), % 27.2 to 39.1
0
Residuals, % 0 to 0.5
0