MakeItFrom.com
Menu (ESC)

C67300 Bronze vs. EN 1.4981 Stainless Steel

C67300 bronze belongs to the copper alloys classification, while EN 1.4981 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C67300 bronze and the bottom bar is EN 1.4981 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 12
39
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 41
77
Shear Strength, MPa 300
420
Tensile Strength: Ultimate (UTS), MPa 500
610
Tensile Strength: Yield (Proof), MPa 340
240

Thermal Properties

Latent Heat of Fusion, J/g 190
290
Maximum Temperature: Mechanical, °C 130
940
Melting Completion (Liquidus), °C 870
1440
Melting Onset (Solidus), °C 830
1400
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 95
16
Thermal Expansion, µm/m-K 20
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 25
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 23
25
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 2.7
4.8
Embodied Energy, MJ/kg 46
67
Embodied Water, L/kg 320
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55
190
Resilience: Unit (Modulus of Resilience), kJ/m3 550
150
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 17
21
Strength to Weight: Bending, points 17
20
Thermal Diffusivity, mm2/s 30
4.3
Thermal Shock Resistance, points 16
14

Alloy Composition

Aluminum (Al), % 0 to 0.25
0
Carbon (C), % 0
0.040 to 0.1
Chromium (Cr), % 0
15.5 to 17.5
Copper (Cu), % 58 to 63
0
Iron (Fe), % 0 to 0.5
59.6 to 66.7
Lead (Pb), % 0.4 to 3.0
0
Manganese (Mn), % 2.0 to 3.5
0 to 1.5
Molybdenum (Mo), % 0
1.6 to 2.0
Nickel (Ni), % 0 to 0.25
15.5 to 17.5
Niobium (Nb), % 0
0.4 to 1.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0.5 to 1.5
0.3 to 0.6
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.3
0
Zinc (Zn), % 27.2 to 39.1
0
Residuals, % 0 to 0.5
0