MakeItFrom.com
Menu (ESC)

C68000 Brass vs. 2095 Aluminum

C68000 brass belongs to the copper alloys classification, while 2095 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C68000 brass and the bottom bar is 2095 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
70
Elongation at Break, % 27
8.5
Poisson's Ratio 0.3
0.33
Shear Modulus, GPa 40
26
Tensile Strength: Ultimate (UTS), MPa 390
700
Tensile Strength: Yield (Proof), MPa 140
610

Thermal Properties

Latent Heat of Fusion, J/g 170
390
Maximum Temperature: Mechanical, °C 120
210
Melting Completion (Liquidus), °C 880
660
Melting Onset (Solidus), °C 870
540
Specific Heat Capacity, J/kg-K 390
910
Thermal Conductivity, W/m-K 96
130
Thermal Expansion, µm/m-K 21
23

Otherwise Unclassified Properties

Base Metal Price, % relative 23
31
Density, g/cm3 8.0
3.0
Embodied Carbon, kg CO2/kg material 2.8
8.6
Embodied Energy, MJ/kg 48
160
Embodied Water, L/kg 330
1470

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82
57
Resilience: Unit (Modulus of Resilience), kJ/m3 95
2640
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 20
46
Strength to Weight: Axial, points 14
65
Strength to Weight: Bending, points 15
59
Thermal Diffusivity, mm2/s 31
49
Thermal Shock Resistance, points 13
31

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.010
91.3 to 94.9
Copper (Cu), % 56 to 60
3.9 to 4.6
Iron (Fe), % 0.25 to 1.3
0 to 0.15
Lead (Pb), % 0 to 0.050
0
Lithium (Li), % 0
0.7 to 1.5
Magnesium (Mg), % 0
0.25 to 0.8
Manganese (Mn), % 0.010 to 0.5
0 to 0.25
Nickel (Ni), % 0.2 to 0.8
0
Silicon (Si), % 0.040 to 0.15
0 to 0.12
Silver (Ag), % 0
0.25 to 0.6
Tin (Sn), % 0.75 to 1.1
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 35.6 to 42.8
0 to 0.25
Zirconium (Zr), % 0
0.040 to 0.18
Residuals, % 0 to 0.5
0 to 0.15