MakeItFrom.com
Menu (ESC)

C69300 Brass vs. Nickel 30

C69300 brass belongs to the copper alloys classification, while nickel 30 belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C69300 brass and the bottom bar is nickel 30.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 8.5 to 15
34
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
82
Shear Strength, MPa 330 to 370
440
Tensile Strength: Ultimate (UTS), MPa 550 to 630
660
Tensile Strength: Yield (Proof), MPa 300 to 390
270

Thermal Properties

Latent Heat of Fusion, J/g 240
320
Maximum Temperature: Mechanical, °C 160
1020
Melting Completion (Liquidus), °C 880
1480
Melting Onset (Solidus), °C 860
1430
Specific Heat Capacity, J/kg-K 400
450
Thermal Conductivity, W/m-K 38
10
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 26
60
Density, g/cm3 8.2
8.5
Embodied Carbon, kg CO2/kg material 2.7
9.4
Embodied Energy, MJ/kg 45
130
Embodied Water, L/kg 310
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47 to 70
180
Resilience: Unit (Modulus of Resilience), kJ/m3 400 to 700
180
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 19 to 21
22
Strength to Weight: Bending, points 18 to 20
20
Thermal Diffusivity, mm2/s 12
2.7
Thermal Shock Resistance, points 19 to 22
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
28 to 31.5
Cobalt (Co), % 0
0 to 5.0
Copper (Cu), % 73 to 77
1.0 to 2.4
Iron (Fe), % 0 to 0.1
13 to 17
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0 to 0.1
0 to 0.030
Molybdenum (Mo), % 0
4.0 to 6.0
Nickel (Ni), % 0 to 0.1
30.2 to 52.2
Niobium (Nb), % 0
0.3 to 1.5
Phosphorus (P), % 0.040 to 0.15
0 to 0.040
Silicon (Si), % 2.7 to 3.4
0 to 0.8
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.2
0
Tungsten (W), % 0
1.5 to 4.0
Zinc (Zn), % 18.4 to 24.3
0
Residuals, % 0 to 0.5
0