MakeItFrom.com
Menu (ESC)

C69400 Brass vs. SAE-AISI 1140 Steel

C69400 brass belongs to the copper alloys classification, while SAE-AISI 1140 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C69400 brass and the bottom bar is SAE-AISI 1140 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 17
14 to 18
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
72
Shear Strength, MPa 350
370 to 420
Tensile Strength: Ultimate (UTS), MPa 570
600 to 700
Tensile Strength: Yield (Proof), MPa 270
340 to 570

Thermal Properties

Latent Heat of Fusion, J/g 260
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 920
1460
Melting Onset (Solidus), °C 820
1420
Specific Heat Capacity, J/kg-K 410
470
Thermal Conductivity, W/m-K 26
51
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.2
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 6.7
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 27
1.8
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.4
Embodied Energy, MJ/kg 44
18
Embodied Water, L/kg 300
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80
89 to 93
Resilience: Unit (Modulus of Resilience), kJ/m3 340
310 to 870
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 19
21 to 25
Strength to Weight: Bending, points 18
20 to 22
Thermal Diffusivity, mm2/s 7.7
14
Thermal Shock Resistance, points 20
18 to 21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.37 to 0.44
Copper (Cu), % 80 to 83
0
Iron (Fe), % 0 to 0.2
98.4 to 98.9
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0
0.7 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 3.5 to 4.5
0
Sulfur (S), % 0
0.080 to 0.13
Zinc (Zn), % 11.5 to 16.5
0
Residuals, % 0 to 0.5
0