MakeItFrom.com
Menu (ESC)

C69400 Brass vs. SAE-AISI 51B60 Steel

C69400 brass belongs to the copper alloys classification, while SAE-AISI 51B60 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C69400 brass and the bottom bar is SAE-AISI 51B60 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 17
12 to 21
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
73
Shear Strength, MPa 350
390 to 420
Tensile Strength: Ultimate (UTS), MPa 570
660
Tensile Strength: Yield (Proof), MPa 270
400 to 550

Thermal Properties

Latent Heat of Fusion, J/g 260
250
Maximum Temperature: Mechanical, °C 170
420
Melting Completion (Liquidus), °C 920
1450
Melting Onset (Solidus), °C 820
1410
Specific Heat Capacity, J/kg-K 410
470
Thermal Conductivity, W/m-K 26
43
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.2
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 6.7
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 27
2.1
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.4
Embodied Energy, MJ/kg 44
19
Embodied Water, L/kg 300
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80
73 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 340
420 to 800
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 19
23
Strength to Weight: Bending, points 18
22
Thermal Diffusivity, mm2/s 7.7
12
Thermal Shock Resistance, points 20
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Boron (B), % 0
0.00050 to 0.0030
Carbon (C), % 0
0.56 to 0.64
Chromium (Cr), % 0
0.7 to 0.9
Copper (Cu), % 80 to 83
0
Iron (Fe), % 0 to 0.2
97 to 97.8
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0
0.75 to 1.0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 3.5 to 4.5
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Zinc (Zn), % 11.5 to 16.5
0
Residuals, % 0 to 0.5
0