MakeItFrom.com
Menu (ESC)

C69710 Brass vs. AISI 403 Stainless Steel

C69710 brass belongs to the copper alloys classification, while AISI 403 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C69710 brass and the bottom bar is AISI 403 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 25
16 to 25
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
76
Shear Strength, MPa 300
340 to 480
Tensile Strength: Ultimate (UTS), MPa 470
530 to 780
Tensile Strength: Yield (Proof), MPa 230
280 to 570

Thermal Properties

Latent Heat of Fusion, J/g 240
270
Maximum Temperature: Mechanical, °C 160
740
Melting Completion (Liquidus), °C 930
1450
Melting Onset (Solidus), °C 880
1400
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 40
28
Thermal Expansion, µm/m-K 19
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 26
6.5
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.9
Embodied Energy, MJ/kg 44
27
Embodied Water, L/kg 310
99

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 250
210 to 840
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 16
19 to 28
Strength to Weight: Bending, points 16
19 to 24
Thermal Diffusivity, mm2/s 12
7.6
Thermal Shock Resistance, points 16
20 to 29

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Arsenic (As), % 0.030 to 0.060
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
11.5 to 13
Copper (Cu), % 75 to 80
0
Iron (Fe), % 0 to 0.2
84.7 to 88.5
Lead (Pb), % 0.5 to 1.5
0
Manganese (Mn), % 0 to 0.4
0 to 1.0
Nickel (Ni), % 0
0 to 0.6
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 2.5 to 3.5
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 13.8 to 22
0
Residuals, % 0 to 0.5
0