MakeItFrom.com
Menu (ESC)

C69710 Brass vs. ASTM A182 Grade F3VCb

C69710 brass belongs to the copper alloys classification, while ASTM A182 grade F3VCb belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C69710 brass and the bottom bar is ASTM A182 grade F3VCb.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 25
21
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 41
74
Shear Strength, MPa 300
420
Tensile Strength: Ultimate (UTS), MPa 470
670
Tensile Strength: Yield (Proof), MPa 230
460

Thermal Properties

Latent Heat of Fusion, J/g 240
250
Maximum Temperature: Mechanical, °C 160
470
Melting Completion (Liquidus), °C 930
1470
Melting Onset (Solidus), °C 880
1430
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 40
40
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 26
4.5
Density, g/cm3 8.3
7.9
Embodied Carbon, kg CO2/kg material 2.7
2.4
Embodied Energy, MJ/kg 44
33
Embodied Water, L/kg 310
64

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
120
Resilience: Unit (Modulus of Resilience), kJ/m3 250
570
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 16
24
Strength to Weight: Bending, points 16
22
Thermal Diffusivity, mm2/s 12
11
Thermal Shock Resistance, points 16
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Arsenic (As), % 0.030 to 0.060
0
Calcium (Ca), % 0
0.00050 to 0.015
Carbon (C), % 0
0.1 to 0.15
Chromium (Cr), % 0
2.7 to 3.3
Copper (Cu), % 75 to 80
0 to 0.25
Iron (Fe), % 0 to 0.2
93.8 to 95.8
Lead (Pb), % 0.5 to 1.5
0
Manganese (Mn), % 0 to 0.4
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0
0 to 0.25
Niobium (Nb), % 0
0.015 to 0.070
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 2.5 to 3.5
0 to 0.1
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0 to 0.015
Vanadium (V), % 0
0.2 to 0.3
Zinc (Zn), % 13.8 to 22
0
Residuals, % 0 to 0.5
0