MakeItFrom.com
Menu (ESC)

C69710 Brass vs. ASTM Grade HC Steel

C69710 brass belongs to the copper alloys classification, while ASTM grade HC steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C69710 brass and the bottom bar is ASTM grade HC steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 25
6.0
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 41
80
Tensile Strength: Ultimate (UTS), MPa 470
430
Tensile Strength: Yield (Proof), MPa 230
200

Thermal Properties

Latent Heat of Fusion, J/g 240
310
Maximum Temperature: Mechanical, °C 160
1100
Melting Completion (Liquidus), °C 930
1410
Melting Onset (Solidus), °C 880
1370
Specific Heat Capacity, J/kg-K 400
490
Thermal Conductivity, W/m-K 40
17
Thermal Expansion, µm/m-K 19
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 26
14
Density, g/cm3 8.3
7.6
Embodied Carbon, kg CO2/kg material 2.7
2.8
Embodied Energy, MJ/kg 44
40
Embodied Water, L/kg 310
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
21
Resilience: Unit (Modulus of Resilience), kJ/m3 250
95
Stiffness to Weight: Axial, points 7.3
15
Stiffness to Weight: Bending, points 19
26
Strength to Weight: Axial, points 16
16
Strength to Weight: Bending, points 16
16
Thermal Diffusivity, mm2/s 12
4.5
Thermal Shock Resistance, points 16
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Arsenic (As), % 0.030 to 0.060
0
Carbon (C), % 0
0 to 0.5
Chromium (Cr), % 0
26 to 30
Copper (Cu), % 75 to 80
0
Iron (Fe), % 0 to 0.2
61.9 to 74
Lead (Pb), % 0.5 to 1.5
0
Manganese (Mn), % 0 to 0.4
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 4.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 2.5 to 3.5
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Zinc (Zn), % 13.8 to 22
0
Residuals, % 0 to 0.5
0