MakeItFrom.com
Menu (ESC)

C70260 Copper vs. N06920 Nickel

C70260 copper belongs to the copper alloys classification, while N06920 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C70260 copper and the bottom bar is N06920 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 9.5 to 19
39
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
82
Shear Strength, MPa 320 to 450
500
Tensile Strength: Ultimate (UTS), MPa 520 to 760
730
Tensile Strength: Yield (Proof), MPa 410 to 650
270

Thermal Properties

Latent Heat of Fusion, J/g 220
320
Maximum Temperature: Mechanical, °C 200
990
Melting Completion (Liquidus), °C 1060
1500
Melting Onset (Solidus), °C 1040
1440
Specific Heat Capacity, J/kg-K 390
440
Thermal Conductivity, W/m-K 160
11
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40 to 50
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 40 to 51
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 31
55
Density, g/cm3 8.9
8.6
Embodied Carbon, kg CO2/kg material 2.7
9.4
Embodied Energy, MJ/kg 43
130
Embodied Water, L/kg 310
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 46 to 140
230
Resilience: Unit (Modulus of Resilience), kJ/m3 710 to 1810
180
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 16 to 24
24
Strength to Weight: Bending, points 16 to 21
21
Thermal Diffusivity, mm2/s 45
2.8
Thermal Shock Resistance, points 18 to 27
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20.5 to 23
Cobalt (Co), % 0
0 to 5.0
Copper (Cu), % 95.8 to 98.8
0
Iron (Fe), % 0
17 to 20
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 1.0 to 3.0
36.9 to 53.5
Phosphorus (P), % 0 to 0.010
0 to 0.040
Silicon (Si), % 0.2 to 0.7
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
1.0 to 3.0
Residuals, % 0 to 0.5
0