MakeItFrom.com
Menu (ESC)

C70260 Copper vs. S44537 Stainless Steel

C70260 copper belongs to the copper alloys classification, while S44537 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C70260 copper and the bottom bar is S44537 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 9.5 to 19
21
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 44
79
Shear Strength, MPa 320 to 450
320
Tensile Strength: Ultimate (UTS), MPa 520 to 760
510
Tensile Strength: Yield (Proof), MPa 410 to 650
360

Thermal Properties

Latent Heat of Fusion, J/g 220
290
Maximum Temperature: Mechanical, °C 200
1000
Melting Completion (Liquidus), °C 1060
1480
Melting Onset (Solidus), °C 1040
1430
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 160
21
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40 to 50
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 40 to 51
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 31
19
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 2.7
3.4
Embodied Energy, MJ/kg 43
50
Embodied Water, L/kg 310
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 46 to 140
95
Resilience: Unit (Modulus of Resilience), kJ/m3 710 to 1810
320
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 16 to 24
18
Strength to Weight: Bending, points 16 to 21
18
Thermal Diffusivity, mm2/s 45
5.6
Thermal Shock Resistance, points 18 to 27
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20 to 24
Copper (Cu), % 95.8 to 98.8
0 to 0.5
Iron (Fe), % 0
69 to 78.6
Lanthanum (La), % 0
0.040 to 0.2
Manganese (Mn), % 0
0 to 0.8
Nickel (Ni), % 1.0 to 3.0
0 to 0.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0 to 0.010
0 to 0.050
Silicon (Si), % 0.2 to 0.7
0.1 to 0.6
Sulfur (S), % 0
0 to 0.0060
Titanium (Ti), % 0
0.020 to 0.2
Tungsten (W), % 0
1.0 to 3.0
Residuals, % 0 to 0.5
0