MakeItFrom.com
Menu (ESC)

C70600 Copper-nickel vs. AWS E90C-B9

C70600 copper-nickel belongs to the copper alloys classification, while AWS E90C-B9 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C70600 copper-nickel and the bottom bar is AWS E90C-B9.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 3.0 to 34
18
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 46
75
Tensile Strength: Ultimate (UTS), MPa 290 to 570
710
Tensile Strength: Yield (Proof), MPa 63 to 270
460

Thermal Properties

Latent Heat of Fusion, J/g 220
270
Melting Completion (Liquidus), °C 1150
1460
Melting Onset (Solidus), °C 1100
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 44
25
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.8
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 9.9
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 33
7.0
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 3.4
2.6
Embodied Energy, MJ/kg 51
37
Embodied Water, L/kg 300
91

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.5 to 160
110
Resilience: Unit (Modulus of Resilience), kJ/m3 16 to 290
550
Stiffness to Weight: Axial, points 7.7
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 9.1 to 18
25
Strength to Weight: Bending, points 11 to 17
23
Thermal Diffusivity, mm2/s 13
6.9
Thermal Shock Resistance, points 9.8 to 19
20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.040
Carbon (C), % 0
0.080 to 0.13
Chromium (Cr), % 0
8.0 to 10.5
Copper (Cu), % 84.7 to 90
0 to 0.2
Iron (Fe), % 1.0 to 1.8
84.4 to 90.9
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 1.0
0 to 1.2
Molybdenum (Mo), % 0
0.85 to 1.2
Nickel (Ni), % 9.0 to 11
0 to 0.8
Niobium (Nb), % 0
0.020 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Vanadium (V), % 0
0.15 to 0.3
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0 to 0.5