MakeItFrom.com
Menu (ESC)

C71500 Copper-nickel vs. N06920 Nickel

C71500 copper-nickel belongs to the copper alloys classification, while N06920 nickel belongs to the nickel alloys. They have a modest 32% of their average alloy composition in common, which, by itself, doesn't mean much. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C71500 copper-nickel and the bottom bar is N06920 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
210
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 52
82
Tensile Strength: Ultimate (UTS), MPa 380 to 620
730

Thermal Properties

Latent Heat of Fusion, J/g 230
320
Maximum Temperature: Mechanical, °C 260
990
Melting Completion (Liquidus), °C 1240
1500
Melting Onset (Solidus), °C 1170
1440
Specific Heat Capacity, J/kg-K 400
440
Thermal Conductivity, W/m-K 28
11
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 4.6
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 4.7
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 41
55
Density, g/cm3 8.9
8.6
Embodied Carbon, kg CO2/kg material 5.1
9.4
Embodied Energy, MJ/kg 74
130
Embodied Water, L/kg 280
270

Common Calculations

Stiffness to Weight: Axial, points 8.6
14
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 12 to 19
24
Strength to Weight: Bending, points 13 to 18
21
Thermal Diffusivity, mm2/s 7.7
2.8
Thermal Shock Resistance, points 12 to 20
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20.5 to 23
Cobalt (Co), % 0
0 to 5.0
Copper (Cu), % 63.5 to 70.6
0
Iron (Fe), % 0.4 to 1.0
17 to 20
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 29 to 33
36.9 to 53.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
1.0 to 3.0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0