MakeItFrom.com
Menu (ESC)

C71580 Copper-nickel vs. EN 1.1221 Steel

C71580 copper-nickel belongs to the copper alloys classification, while EN 1.1221 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C71580 copper-nickel and the bottom bar is EN 1.1221 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
210 to 250
Elastic (Young's, Tensile) Modulus, GPa 140
190
Elongation at Break, % 40
10 to 21
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 51
72
Shear Strength, MPa 230
450 to 520
Tensile Strength: Ultimate (UTS), MPa 330
730 to 870
Tensile Strength: Yield (Proof), MPa 110
390 to 550

Thermal Properties

Latent Heat of Fusion, J/g 230
250
Maximum Temperature: Mechanical, °C 260
400
Melting Completion (Liquidus), °C 1180
1460
Melting Onset (Solidus), °C 1120
1410
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 39
48
Thermal Expansion, µm/m-K 15
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 4.7
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 4.7
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 41
2.1
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 5.1
1.5
Embodied Energy, MJ/kg 74
19
Embodied Water, L/kg 280
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
67 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 47
410 to 800
Stiffness to Weight: Axial, points 8.5
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 10
26 to 31
Strength to Weight: Bending, points 12
23 to 26
Thermal Diffusivity, mm2/s 11
13
Thermal Shock Resistance, points 11
23 to 28

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.070
0.57 to 0.65
Chromium (Cr), % 0
0 to 0.4
Copper (Cu), % 65.5 to 71
0
Iron (Fe), % 0 to 0.5
97.1 to 98.8
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.3
0.6 to 0.9
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 29 to 33
0 to 0.4
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.5
0