MakeItFrom.com
Menu (ESC)

C71640 Copper-nickel vs. SAE-AISI 9310 Steel

C71640 copper-nickel belongs to the copper alloys classification, while SAE-AISI 9310 steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C71640 copper-nickel and the bottom bar is SAE-AISI 9310 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 52
73
Tensile Strength: Ultimate (UTS), MPa 490 to 630
820 to 910
Tensile Strength: Yield (Proof), MPa 190 to 460
450 to 570

Thermal Properties

Latent Heat of Fusion, J/g 240
250
Maximum Temperature: Mechanical, °C 260
440
Melting Completion (Liquidus), °C 1180
1460
Melting Onset (Solidus), °C 1120
1420
Specific Heat Capacity, J/kg-K 410
470
Thermal Conductivity, W/m-K 29
48
Thermal Expansion, µm/m-K 15
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 7.1
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 40
4.4
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 5.0
1.8
Embodied Energy, MJ/kg 73
24
Embodied Water, L/kg 280
57

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 750
540 to 860
Stiffness to Weight: Axial, points 8.7
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 15 to 20
29 to 32
Strength to Weight: Bending, points 16 to 18
25 to 27
Thermal Diffusivity, mm2/s 8.2
13
Thermal Shock Resistance, points 16 to 21
24 to 27

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.080 to 0.13
Chromium (Cr), % 0
1.0 to 1.4
Copper (Cu), % 61.7 to 67.8
0
Iron (Fe), % 1.7 to 2.3
93.8 to 95.2
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 1.5 to 2.5
0.45 to 0.65
Molybdenum (Mo), % 0
0.080 to 0.15
Nickel (Ni), % 29 to 32
3.0 to 3.5
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0
0.2 to 0.35
Sulfur (S), % 0
0 to 0.012
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0