MakeItFrom.com
Menu (ESC)

C74500 Nickel Silver vs. Grade 31 Titanium

C74500 nickel silver belongs to the copper alloys classification, while grade 31 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C74500 nickel silver and the bottom bar is grade 31 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 3.0 to 24
20
Poisson's Ratio 0.32
0.32
Shear Modulus, GPa 44
41
Shear Strength, MPa 310 to 380
320
Tensile Strength: Ultimate (UTS), MPa 390 to 700
510
Tensile Strength: Yield (Proof), MPa 380 to 600
450

Thermal Properties

Latent Heat of Fusion, J/g 190
420
Maximum Temperature: Mechanical, °C 170
320
Melting Completion (Liquidus), °C 1020
1660
Melting Onset (Solidus), °C 970
1610
Specific Heat Capacity, J/kg-K 390
540
Thermal Conductivity, W/m-K 45
21
Thermal Expansion, µm/m-K 19
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 9.7
6.9

Otherwise Unclassified Properties

Density, g/cm3 8.3
4.5
Embodied Carbon, kg CO2/kg material 3.4
36
Embodied Energy, MJ/kg 54
600
Embodied Water, L/kg 310
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 160
99
Resilience: Unit (Modulus of Resilience), kJ/m3 620 to 1540
940
Stiffness to Weight: Axial, points 7.7
13
Stiffness to Weight: Bending, points 19
35
Strength to Weight: Axial, points 13 to 23
32
Strength to Weight: Bending, points 14 to 21
32
Thermal Diffusivity, mm2/s 14
8.5
Thermal Shock Resistance, points 13 to 23
39

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.080
Cobalt (Co), % 0
0.2 to 0.8
Copper (Cu), % 63.5 to 66.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.25
0 to 0.3
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0
Nickel (Ni), % 9.0 to 11
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.35
Palladium (Pd), % 0
0.040 to 0.080
Titanium (Ti), % 0
97.9 to 99.76
Zinc (Zn), % 21.2 to 27.5
0
Residuals, % 0 to 0.5
0 to 0.4