MakeItFrom.com
Menu (ESC)

C75400 Nickel Silver vs. ASTM A182 Grade F36

C75400 nickel silver belongs to the copper alloys classification, while ASTM A182 grade F36 belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C75400 nickel silver and the bottom bar is ASTM A182 grade F36.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.0 to 43
17
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 46
73
Shear Strength, MPa 250 to 370
440
Tensile Strength: Ultimate (UTS), MPa 370 to 630
710
Tensile Strength: Yield (Proof), MPa 130 to 590
490

Thermal Properties

Latent Heat of Fusion, J/g 200
250
Maximum Temperature: Mechanical, °C 190
410
Melting Completion (Liquidus), °C 1080
1460
Melting Onset (Solidus), °C 1040
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 36
39
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 7.4
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 32
3.4
Density, g/cm3 8.5
7.9
Embodied Carbon, kg CO2/kg material 3.8
1.7
Embodied Energy, MJ/kg 59
22
Embodied Water, L/kg 300
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 120
110
Resilience: Unit (Modulus of Resilience), kJ/m3 75 to 1450
650
Stiffness to Weight: Axial, points 7.9
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 12 to 21
25
Strength to Weight: Bending, points 13 to 19
22
Thermal Diffusivity, mm2/s 11
10
Thermal Shock Resistance, points 12 to 21
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.050
Carbon (C), % 0
0.1 to 0.17
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 63.5 to 66.5
0.5 to 0.8
Iron (Fe), % 0 to 0.25
95 to 97.1
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0.8 to 1.2
Molybdenum (Mo), % 0
0.25 to 0.5
Nickel (Ni), % 14 to 16
1.0 to 1.3
Niobium (Nb), % 0
0.015 to 0.045
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0.25 to 0.5
Sulfur (S), % 0
0 to 0.025
Vanadium (V), % 0
0 to 0.020
Zinc (Zn), % 16.2 to 22.5
0
Residuals, % 0 to 0.5
0