MakeItFrom.com
Menu (ESC)

C81400 Copper vs. EN 1.0308 Steel

C81400 copper belongs to the copper alloys classification, while EN 1.0308 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C81400 copper and the bottom bar is EN 1.0308 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 11
7.8 to 28
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 41
73
Tensile Strength: Ultimate (UTS), MPa 370
360 to 440
Tensile Strength: Yield (Proof), MPa 250
190 to 340

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
400
Melting Completion (Liquidus), °C 1090
1460
Melting Onset (Solidus), °C 1070
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 260
51
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 61
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 33
1.8
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 2.8
1.4
Embodied Energy, MJ/kg 45
18
Embodied Water, L/kg 310
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36
32 to 95
Resilience: Unit (Modulus of Resilience), kJ/m3 260
93 to 300
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 11
13 to 16
Strength to Weight: Bending, points 13
14 to 16
Thermal Diffusivity, mm2/s 75
14
Thermal Shock Resistance, points 13
11 to 14

Alloy Composition

Beryllium (Be), % 0.020 to 0.1
0
Carbon (C), % 0
0 to 0.17
Chromium (Cr), % 0.6 to 1.0
0
Copper (Cu), % 98.4 to 99.38
0
Iron (Fe), % 0
98.2 to 100
Manganese (Mn), % 0
0 to 1.2
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.35
Sulfur (S), % 0
0 to 0.045
Residuals, % 0 to 0.5
0