MakeItFrom.com
Menu (ESC)

C81500 Copper vs. AISI 415 Stainless Steel

C81500 copper belongs to the copper alloys classification, while AISI 415 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C81500 copper and the bottom bar is AISI 415 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
260
Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 17
17
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
76
Tensile Strength: Ultimate (UTS), MPa 350
900
Tensile Strength: Yield (Proof), MPa 280
700

Thermal Properties

Latent Heat of Fusion, J/g 210
270
Maximum Temperature: Mechanical, °C 200
780
Melting Completion (Liquidus), °C 1090
1450
Melting Onset (Solidus), °C 1080
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 320
24
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 82
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 83
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 31
11
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.6
2.5
Embodied Energy, MJ/kg 41
35
Embodied Water, L/kg 310
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 56
140
Resilience: Unit (Modulus of Resilience), kJ/m3 330
1250
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 11
32
Strength to Weight: Bending, points 12
26
Thermal Diffusivity, mm2/s 91
6.4
Thermal Shock Resistance, points 12
33

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.1
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0.4 to 1.5
11.5 to 14
Copper (Cu), % 97.4 to 99.6
0
Iron (Fe), % 0 to 0.1
77.8 to 84
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0.5 to 1.0
Molybdenum (Mo), % 0
0.5 to 1.0
Nickel (Ni), % 0
3.5 to 5.5
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.15
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0