MakeItFrom.com
Menu (ESC)

C82000 Copper vs. AWS E70C-Ni2

C82000 copper belongs to the copper alloys classification, while AWS E70C-Ni2 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C82000 copper and the bottom bar is AWS E70C-Ni2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 8.0 to 20
27
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 45
72
Tensile Strength: Ultimate (UTS), MPa 350 to 690
560
Tensile Strength: Yield (Proof), MPa 140 to 520
450

Thermal Properties

Latent Heat of Fusion, J/g 220
250
Melting Completion (Liquidus), °C 1090
1450
Melting Onset (Solidus), °C 970
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 260
52
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 46
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 60
3.3
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 5.0
1.6
Embodied Energy, MJ/kg 77
22
Embodied Water, L/kg 320
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51 to 55
140
Resilience: Unit (Modulus of Resilience), kJ/m3 80 to 1120
540
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 11 to 22
20
Strength to Weight: Bending, points 12 to 20
19
Thermal Diffusivity, mm2/s 76
14
Thermal Shock Resistance, points 12 to 24
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.1
0
Beryllium (Be), % 0.45 to 0.8
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.1
0
Cobalt (Co), % 2.2 to 2.7
0
Copper (Cu), % 95.2 to 97.4
0 to 0.35
Iron (Fe), % 0 to 0.1
94.1 to 98.3
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.3
Nickel (Ni), % 0 to 0.2
1.8 to 2.8
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.15
0 to 0.9
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0 to 0.5