MakeItFrom.com
Menu (ESC)

C82200 Copper vs. EN 1.0034 Steel

C82200 copper belongs to the copper alloys classification, while EN 1.0034 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C82200 copper and the bottom bar is EN 1.0034 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 8.0 to 20
9.0 to 32
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
73
Tensile Strength: Ultimate (UTS), MPa 390 to 660
340 to 380
Tensile Strength: Yield (Proof), MPa 210 to 520
180 to 280

Thermal Properties

Latent Heat of Fusion, J/g 220
250
Maximum Temperature: Mechanical, °C 230
400
Melting Completion (Liquidus), °C 1080
1460
Melting Onset (Solidus), °C 1040
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 180
53
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 46
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 55
1.8
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 4.8
1.4
Embodied Energy, MJ/kg 74
18
Embodied Water, L/kg 310
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 66
31 to 95
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1130
84 to 210
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 12 to 20
12 to 13
Strength to Weight: Bending, points 13 to 19
14 to 15
Thermal Diffusivity, mm2/s 53
14
Thermal Shock Resistance, points 14 to 23
11 to 12

Alloy Composition

Beryllium (Be), % 0.35 to 0.8
0
Carbon (C), % 0
0 to 0.15
Cobalt (Co), % 0 to 0.3
0
Copper (Cu), % 97.4 to 98.7
0
Iron (Fe), % 0
98.7 to 100
Manganese (Mn), % 0
0 to 0.7
Nickel (Ni), % 1.0 to 2.0
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.35
Sulfur (S), % 0
0 to 0.045
Residuals, % 0 to 0.5
0