MakeItFrom.com
Menu (ESC)

C82600 Copper vs. C94900 Bronze

Both C82600 copper and C94900 bronze are copper alloys. They have 81% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C82600 copper and the bottom bar is C94900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 1.0 to 20
17
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 46
41
Tensile Strength: Ultimate (UTS), MPa 570 to 1140
300
Tensile Strength: Yield (Proof), MPa 320 to 1070
130

Thermal Properties

Latent Heat of Fusion, J/g 240
190
Maximum Temperature: Mechanical, °C 300
170
Melting Completion (Liquidus), °C 950
980
Melting Onset (Solidus), °C 860
910
Specific Heat Capacity, J/kg-K 390
370
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 19
14
Electrical Conductivity: Equal Weight (Specific), % IACS 20
14

Otherwise Unclassified Properties

Density, g/cm3 8.7
8.8
Embodied Carbon, kg CO2/kg material 11
3.4
Embodied Energy, MJ/kg 180
55
Embodied Water, L/kg 310
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 97
41
Resilience: Unit (Modulus of Resilience), kJ/m3 430 to 4690
72
Stiffness to Weight: Axial, points 7.8
6.9
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 18 to 36
9.4
Strength to Weight: Bending, points 17 to 28
11
Thermal Shock Resistance, points 19 to 39
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.15
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Beryllium (Be), % 2.3 to 2.6
0
Chromium (Cr), % 0 to 0.1
0
Cobalt (Co), % 0.35 to 0.65
0
Copper (Cu), % 94.9 to 97.2
79 to 81
Iron (Fe), % 0 to 0.25
0 to 0.3
Lead (Pb), % 0 to 0.020
4.0 to 6.0
Manganese (Mn), % 0
0 to 0.1
Nickel (Ni), % 0 to 0.2
4.0 to 6.0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0.2 to 0.35
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0 to 0.1
4.0 to 6.0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
4.0 to 6.0
Residuals, % 0 to 0.5
0 to 0.8