MakeItFrom.com
Menu (ESC)

C84000 Brass vs. ACI-ASTM CF8M Steel

C84000 brass belongs to the copper alloys classification, while ACI-ASTM CF8M steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C84000 brass and the bottom bar is ACI-ASTM CF8M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 65
170
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 27
50
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
78
Tensile Strength: Ultimate (UTS), MPa 250
540
Tensile Strength: Yield (Proof), MPa 140
290

Thermal Properties

Latent Heat of Fusion, J/g 190
300
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 1040
1440
Melting Onset (Solidus), °C 940
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 72
16
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 16
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 17
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 30
19
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 3.0
3.8
Embodied Energy, MJ/kg 49
53
Embodied Water, L/kg 330
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 58
230
Resilience: Unit (Modulus of Resilience), kJ/m3 83
210
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 8.2
19
Strength to Weight: Bending, points 10
19
Thermal Diffusivity, mm2/s 22
4.3
Thermal Shock Resistance, points 9.0
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.020
0
Boron (B), % 0 to 0.1
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
18 to 21
Copper (Cu), % 82 to 89
0
Iron (Fe), % 0 to 0.4
60.3 to 71
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0 to 0.010
0 to 1.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0.5 to 2.0
9.0 to 12
Phosphorus (P), % 0 to 0.050
0 to 0.040
Silicon (Si), % 0 to 0.0050
0 to 2.0
Sulfur (S), % 0.1 to 0.65
0 to 0.040
Tin (Sn), % 2.0 to 4.0
0
Zinc (Zn), % 5.0 to 14
0
Zirconium (Zr), % 0 to 0.1
0
Residuals, % 0 to 0.7
0