MakeItFrom.com
Menu (ESC)

C85400 Brass vs. S32654 Stainless Steel

C85400 brass belongs to the copper alloys classification, while S32654 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C85400 brass and the bottom bar is S32654 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 55
220
Elastic (Young's, Tensile) Modulus, GPa 100
210
Elongation at Break, % 23
45
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
82
Tensile Strength: Ultimate (UTS), MPa 220
850
Tensile Strength: Yield (Proof), MPa 85
490

Thermal Properties

Latent Heat of Fusion, J/g 180
310
Maximum Temperature: Mechanical, °C 130
1100
Melting Completion (Liquidus), °C 940
1450
Melting Onset (Solidus), °C 940
1410
Specific Heat Capacity, J/kg-K 380
460
Thermal Conductivity, W/m-K 89
11
Thermal Expansion, µm/m-K 20
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 22
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 25
34
Density, g/cm3 8.3
8.0
Embodied Carbon, kg CO2/kg material 2.8
6.4
Embodied Energy, MJ/kg 46
87
Embodied Water, L/kg 330
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40
330
Resilience: Unit (Modulus of Resilience), kJ/m3 35
570
Stiffness to Weight: Axial, points 7.0
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 7.5
29
Strength to Weight: Bending, points 9.9
25
Thermal Diffusivity, mm2/s 28
2.9
Thermal Shock Resistance, points 7.6
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.35
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
24 to 25
Copper (Cu), % 65 to 70
0.3 to 0.6
Iron (Fe), % 0 to 0.7
38.3 to 45.3
Lead (Pb), % 1.5 to 3.8
0
Manganese (Mn), % 0
2.0 to 4.0
Molybdenum (Mo), % 0
7.0 to 8.0
Nickel (Ni), % 0 to 1.0
21 to 23
Nitrogen (N), % 0
0.45 to 0.55
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.050
0 to 0.5
Sulfur (S), % 0
0 to 0.0050
Tin (Sn), % 0.5 to 1.5
0
Zinc (Zn), % 24 to 32
0
Residuals, % 0 to 1.1
0