MakeItFrom.com
Menu (ESC)

C85800 Brass vs. EN 1.4988 Stainless Steel

C85800 brass belongs to the copper alloys classification, while EN 1.4988 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C85800 brass and the bottom bar is EN 1.4988 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 15
34
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 380
640
Tensile Strength: Yield (Proof), MPa 210
290

Thermal Properties

Latent Heat of Fusion, J/g 170
290
Maximum Temperature: Mechanical, °C 120
920
Melting Completion (Liquidus), °C 900
1450
Melting Onset (Solidus), °C 870
1400
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 84
15
Thermal Expansion, µm/m-K 20
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 22
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 24
23
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 2.8
6.0
Embodied Energy, MJ/kg 47
89
Embodied Water, L/kg 330
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48
180
Resilience: Unit (Modulus of Resilience), kJ/m3 210
210
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 13
23
Strength to Weight: Bending, points 15
21
Thermal Diffusivity, mm2/s 27
4.0
Thermal Shock Resistance, points 13
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.55
0
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Carbon (C), % 0
0.040 to 0.1
Chromium (Cr), % 0
15.5 to 17.5
Copper (Cu), % 57 to 69
0
Iron (Fe), % 0 to 0.5
62.1 to 69.5
Lead (Pb), % 0 to 1.5
0
Manganese (Mn), % 0 to 0.25
0 to 1.5
Molybdenum (Mo), % 0
1.1 to 1.5
Nickel (Ni), % 0 to 0.5
12.5 to 14.5
Niobium (Nb), % 0
0.4 to 1.2
Nitrogen (N), % 0
0.060 to 0.14
Phosphorus (P), % 0 to 0.010
0 to 0.035
Silicon (Si), % 0 to 0.25
0.3 to 0.6
Sulfur (S), % 0 to 0.050
0 to 0.015
Tin (Sn), % 0 to 1.5
0
Vanadium (V), % 0
0.6 to 0.85
Zinc (Zn), % 31 to 41
0
Residuals, % 0 to 1.3
0