MakeItFrom.com
Menu (ESC)

C85800 Brass vs. SAE-AISI 1090 Steel

C85800 brass belongs to the copper alloys classification, while SAE-AISI 1090 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C85800 brass and the bottom bar is SAE-AISI 1090 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 15
11
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
72
Tensile Strength: Ultimate (UTS), MPa 380
790 to 950
Tensile Strength: Yield (Proof), MPa 210
520 to 610

Thermal Properties

Latent Heat of Fusion, J/g 170
240
Maximum Temperature: Mechanical, °C 120
400
Melting Completion (Liquidus), °C 900
1450
Melting Onset (Solidus), °C 870
1410
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 84
50
Thermal Expansion, µm/m-K 20
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 22
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 24
1.8
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.4
Embodied Energy, MJ/kg 47
19
Embodied Water, L/kg 330
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48
82 to 91
Resilience: Unit (Modulus of Resilience), kJ/m3 210
730 to 1000
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 13
28 to 34
Strength to Weight: Bending, points 15
24 to 27
Thermal Diffusivity, mm2/s 27
13
Thermal Shock Resistance, points 13
25 to 31

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.55
0
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Carbon (C), % 0
0.85 to 1.0
Copper (Cu), % 57 to 69
0
Iron (Fe), % 0 to 0.5
98 to 98.6
Lead (Pb), % 0 to 1.5
0
Manganese (Mn), % 0 to 0.25
0.6 to 0.9
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.010
0 to 0.040
Silicon (Si), % 0 to 0.25
0
Sulfur (S), % 0 to 0.050
0 to 0.050
Tin (Sn), % 0 to 1.5
0
Zinc (Zn), % 31 to 41
0
Residuals, % 0 to 1.3
0