MakeItFrom.com
Menu (ESC)

C85900 Brass vs. S31100 Stainless Steel

C85900 brass belongs to the copper alloys classification, while S31100 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C85900 brass and the bottom bar is S31100 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
270
Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 30
4.5
Poisson's Ratio 0.31
0.27
Shear Modulus, GPa 40
79
Tensile Strength: Ultimate (UTS), MPa 460
1000
Tensile Strength: Yield (Proof), MPa 190
710

Thermal Properties

Latent Heat of Fusion, J/g 170
300
Maximum Temperature: Mechanical, °C 130
1100
Melting Completion (Liquidus), °C 830
1420
Melting Onset (Solidus), °C 790
1380
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 89
16
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 28
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 24
16
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 2.9
3.1
Embodied Energy, MJ/kg 49
44
Embodied Water, L/kg 330
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
40
Resilience: Unit (Modulus of Resilience), kJ/m3 170
1240
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 16
36
Strength to Weight: Bending, points 17
29
Thermal Diffusivity, mm2/s 29
4.2
Thermal Shock Resistance, points 16
28

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0.1 to 0.6
0
Antimony (Sb), % 0 to 0.2
0
Boron (B), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
25 to 27
Copper (Cu), % 58 to 62
0
Iron (Fe), % 0 to 0.5
63.6 to 69
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0 to 0.010
0 to 1.0
Nickel (Ni), % 0 to 1.5
6.0 to 7.0
Phosphorus (P), % 0 to 0.010
0 to 0.045
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0.1 to 0.65
0 to 0.030
Tin (Sn), % 0 to 1.5
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 31 to 41
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.7
0