MakeItFrom.com
Menu (ESC)

C86300 Bronze vs. S24000 Stainless Steel

C86300 bronze belongs to the copper alloys classification, while S24000 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown.

For each property being compared, the top bar is C86300 bronze and the bottom bar is S24000 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
210
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 14
39
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 42
77
Tensile Strength: Ultimate (UTS), MPa 850
770
Tensile Strength: Yield (Proof), MPa 480
430

Thermal Properties

Latent Heat of Fusion, J/g 200
280
Maximum Temperature: Mechanical, °C 160
910
Melting Completion (Liquidus), °C 920
1390
Melting Onset (Solidus), °C 890
1350
Specific Heat Capacity, J/kg-K 420
480
Thermal Expansion, µm/m-K 20
17

Otherwise Unclassified Properties

Base Metal Price, % relative 23
12
Density, g/cm3 7.8
7.6
Embodied Carbon, kg CO2/kg material 3.0
2.7
Embodied Energy, MJ/kg 51
39
Embodied Water, L/kg 360
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
260
Resilience: Unit (Modulus of Resilience), kJ/m3 1030
470
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 30
28
Strength to Weight: Bending, points 25
24
Thermal Shock Resistance, points 28
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.0 to 7.5
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 60 to 66
0
Iron (Fe), % 2.0 to 4.0
61.5 to 69
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 2.5 to 5.0
11.5 to 14.5
Nickel (Ni), % 0 to 1.0
2.3 to 3.7
Nitrogen (N), % 0
0.2 to 0.4
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 22 to 28
0
Residuals, % 0 to 1.0
0