MakeItFrom.com
Menu (ESC)

C86500 Bronze vs. AISI 446 Stainless Steel

C86500 bronze belongs to the copper alloys classification, while AISI 446 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C86500 bronze and the bottom bar is AISI 446 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 25
23
Poisson's Ratio 0.3
0.27
Shear Modulus, GPa 40
79
Tensile Strength: Ultimate (UTS), MPa 530
570
Tensile Strength: Yield (Proof), MPa 190
300

Thermal Properties

Latent Heat of Fusion, J/g 170
290
Maximum Temperature: Mechanical, °C 120
1180
Melting Completion (Liquidus), °C 880
1510
Melting Onset (Solidus), °C 860
1430
Specific Heat Capacity, J/kg-K 390
490
Thermal Conductivity, W/m-K 86
17
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 25
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 23
12
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 2.8
2.4
Embodied Energy, MJ/kg 48
35
Embodied Water, L/kg 330
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
110
Resilience: Unit (Modulus of Resilience), kJ/m3 180
230
Stiffness to Weight: Axial, points 7.4
15
Stiffness to Weight: Bending, points 20
26
Strength to Weight: Axial, points 19
21
Strength to Weight: Bending, points 18
20
Thermal Diffusivity, mm2/s 28
4.6
Thermal Shock Resistance, points 17
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0.5 to 1.5
0
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0
23 to 27
Copper (Cu), % 55 to 60
0
Iron (Fe), % 0.4 to 2.0
69.2 to 77
Lead (Pb), % 0 to 0.4
0
Manganese (Mn), % 0.1 to 1.5
0 to 1.5
Nickel (Ni), % 0 to 1.0
0 to 0.75
Nitrogen (N), % 0
0 to 0.25
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 1.0
0
Zinc (Zn), % 36 to 42
0
Residuals, % 0 to 1.0
0