MakeItFrom.com
Menu (ESC)

C87200 Bronze vs. ACI-ASTM CD3MCuN Steel

C87200 bronze belongs to the copper alloys classification, while ACI-ASTM CD3MCuN steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C87200 bronze and the bottom bar is ACI-ASTM CD3MCuN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 30
29
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 43
80
Tensile Strength: Ultimate (UTS), MPa 380
790
Tensile Strength: Yield (Proof), MPa 170
500

Thermal Properties

Latent Heat of Fusion, J/g 260
300
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 970
1440
Melting Onset (Solidus), °C 860
1390
Specific Heat Capacity, J/kg-K 410
480
Thermal Conductivity, W/m-K 28
15
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 6.3
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 29
20
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 2.7
3.9
Embodied Energy, MJ/kg 44
54
Embodied Water, L/kg 310
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 93
200
Resilience: Unit (Modulus of Resilience), kJ/m3 130
620
Stiffness to Weight: Axial, points 7.4
15
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 12
28
Strength to Weight: Bending, points 14
24
Thermal Diffusivity, mm2/s 8.0
4.1
Thermal Shock Resistance, points 14
22

Alloy Composition

Aluminum (Al), % 0 to 1.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
24 to 26.7
Copper (Cu), % 89 to 99
1.4 to 1.9
Iron (Fe), % 0 to 2.5
58.2 to 65.9
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 0 to 1.5
0 to 1.2
Molybdenum (Mo), % 0
2.9 to 3.8
Nickel (Ni), % 0
5.6 to 6.7
Nitrogen (N), % 0
0.22 to 0.33
Phosphorus (P), % 0 to 0.5
0 to 0.030
Silicon (Si), % 1.0 to 5.0
0 to 1.1
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 1.0
0
Zinc (Zn), % 0 to 5.0
0