MakeItFrom.com
Menu (ESC)

C87200 Bronze vs. AISI 303 Stainless Steel

C87200 bronze belongs to the copper alloys classification, while AISI 303 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C87200 bronze and the bottom bar is AISI 303 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
170 to 210
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 30
40 to 51
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
77
Tensile Strength: Ultimate (UTS), MPa 380
600 to 690
Tensile Strength: Yield (Proof), MPa 170
230 to 420

Thermal Properties

Latent Heat of Fusion, J/g 260
290
Maximum Temperature: Mechanical, °C 200
930
Melting Completion (Liquidus), °C 970
1450
Melting Onset (Solidus), °C 860
1400
Specific Heat Capacity, J/kg-K 410
480
Thermal Conductivity, W/m-K 28
16
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.0
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 6.3
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 29
15
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 2.7
3.0
Embodied Energy, MJ/kg 44
42
Embodied Water, L/kg 310
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 93
240
Resilience: Unit (Modulus of Resilience), kJ/m3 130
140 to 440
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 12
21 to 25
Strength to Weight: Bending, points 14
20 to 22
Thermal Diffusivity, mm2/s 8.0
4.4
Thermal Shock Resistance, points 14
13 to 15

Alloy Composition

Aluminum (Al), % 0 to 1.5
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 89 to 99
0
Iron (Fe), % 0 to 2.5
67.3 to 74.9
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 0 to 1.5
0 to 2.0
Nickel (Ni), % 0
8.0 to 10
Phosphorus (P), % 0 to 0.5
0 to 0.2
Silicon (Si), % 1.0 to 5.0
0 to 1.0
Sulfur (S), % 0
0.15 to 0.35
Tin (Sn), % 0 to 1.0
0
Zinc (Zn), % 0 to 5.0
0