MakeItFrom.com
Menu (ESC)

C87200 Bronze vs. AWS E80C-B6

C87200 bronze belongs to the copper alloys classification, while AWS E80C-B6 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C87200 bronze and the bottom bar is AWS E80C-B6.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 30
19
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
74
Tensile Strength: Ultimate (UTS), MPa 380
630
Tensile Strength: Yield (Proof), MPa 170
530

Thermal Properties

Latent Heat of Fusion, J/g 260
260
Melting Completion (Liquidus), °C 970
1450
Melting Onset (Solidus), °C 860
1410
Specific Heat Capacity, J/kg-K 410
470
Thermal Conductivity, W/m-K 28
39
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.0
8.2
Electrical Conductivity: Equal Weight (Specific), % IACS 6.3
9.5

Otherwise Unclassified Properties

Base Metal Price, % relative 29
4.7
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.8
Embodied Energy, MJ/kg 44
25
Embodied Water, L/kg 310
71

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 93
120
Resilience: Unit (Modulus of Resilience), kJ/m3 130
730
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 12
22
Strength to Weight: Bending, points 14
21
Thermal Diffusivity, mm2/s 8.0
11
Thermal Shock Resistance, points 14
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 1.5
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
4.5 to 6.0
Copper (Cu), % 89 to 99
0 to 0.35
Iron (Fe), % 0 to 2.5
90.1 to 94.4
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 0 to 1.5
0.4 to 1.0
Molybdenum (Mo), % 0
0.45 to 0.65
Nickel (Ni), % 0
0 to 0.6
Phosphorus (P), % 0 to 0.5
0 to 0.025
Silicon (Si), % 1.0 to 5.0
0.25 to 0.6
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 1.0
0
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 0 to 5.0
0
Residuals, % 0
0 to 0.5