MakeItFrom.com
Menu (ESC)

C87200 Bronze vs. EN 1.4986 Stainless Steel

C87200 bronze belongs to the copper alloys classification, while EN 1.4986 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C87200 bronze and the bottom bar is EN 1.4986 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
230
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 30
18
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
77
Tensile Strength: Ultimate (UTS), MPa 380
750
Tensile Strength: Yield (Proof), MPa 170
560

Thermal Properties

Latent Heat of Fusion, J/g 260
290
Maximum Temperature: Mechanical, °C 200
940
Melting Completion (Liquidus), °C 970
1450
Melting Onset (Solidus), °C 860
1400
Specific Heat Capacity, J/kg-K 410
470
Thermal Conductivity, W/m-K 28
15
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.0
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 6.3
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 29
25
Density, g/cm3 8.6
7.9
Embodied Carbon, kg CO2/kg material 2.7
4.8
Embodied Energy, MJ/kg 44
67
Embodied Water, L/kg 310
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 93
120
Resilience: Unit (Modulus of Resilience), kJ/m3 130
790
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 12
26
Strength to Weight: Bending, points 14
23
Thermal Diffusivity, mm2/s 8.0
4.0
Thermal Shock Resistance, points 14
16

Alloy Composition

Aluminum (Al), % 0 to 1.5
0
Boron (B), % 0
0.050 to 0.1
Carbon (C), % 0
0.040 to 0.1
Chromium (Cr), % 0
15.5 to 17.5
Copper (Cu), % 89 to 99
0
Iron (Fe), % 0 to 2.5
59.4 to 66.6
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 0 to 1.5
0 to 1.5
Molybdenum (Mo), % 0
1.6 to 2.0
Nickel (Ni), % 0
15.5 to 17.5
Niobium (Nb), % 0
0.4 to 1.2
Phosphorus (P), % 0 to 0.5
0 to 0.045
Silicon (Si), % 1.0 to 5.0
0.3 to 0.6
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 1.0
0
Zinc (Zn), % 0 to 5.0
0