MakeItFrom.com
Menu (ESC)

C87200 Bronze vs. C43500 Brass

Both C87200 bronze and C43500 brass are copper alloys. They have 84% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C87200 bronze and the bottom bar is C43500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 30
8.5 to 46
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 43
42
Tensile Strength: Ultimate (UTS), MPa 380
320 to 530
Tensile Strength: Yield (Proof), MPa 170
120 to 480

Thermal Properties

Latent Heat of Fusion, J/g 260
190
Maximum Temperature: Mechanical, °C 200
160
Melting Completion (Liquidus), °C 970
1000
Melting Onset (Solidus), °C 860
970
Specific Heat Capacity, J/kg-K 410
380
Thermal Conductivity, W/m-K 28
120
Thermal Expansion, µm/m-K 17
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.0
28
Electrical Conductivity: Equal Weight (Specific), % IACS 6.3
30

Otherwise Unclassified Properties

Base Metal Price, % relative 29
28
Density, g/cm3 8.6
8.5
Embodied Carbon, kg CO2/kg material 2.7
2.7
Embodied Energy, MJ/kg 44
45
Embodied Water, L/kg 310
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 93
44 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 130
65 to 1040
Stiffness to Weight: Axial, points 7.4
7.2
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 12
10 to 17
Strength to Weight: Bending, points 14
12 to 17
Thermal Diffusivity, mm2/s 8.0
37
Thermal Shock Resistance, points 14
11 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 1.5
0
Copper (Cu), % 89 to 99
79 to 83
Iron (Fe), % 0 to 2.5
0 to 0.050
Lead (Pb), % 0 to 0.5
0 to 0.090
Manganese (Mn), % 0 to 1.5
0
Phosphorus (P), % 0 to 0.5
0
Silicon (Si), % 1.0 to 5.0
0
Tin (Sn), % 0 to 1.0
0.6 to 1.2
Zinc (Zn), % 0 to 5.0
15.4 to 20.4
Residuals, % 0
0 to 0.3