MakeItFrom.com
Menu (ESC)

C87200 Bronze vs. N08925 Stainless Steel

C87200 bronze belongs to the copper alloys classification, while N08925 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C87200 bronze and the bottom bar is N08925 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 30
45
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
80
Tensile Strength: Ultimate (UTS), MPa 380
680
Tensile Strength: Yield (Proof), MPa 170
340

Thermal Properties

Latent Heat of Fusion, J/g 260
300
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 970
1460
Melting Onset (Solidus), °C 860
1410
Specific Heat Capacity, J/kg-K 410
460
Thermal Conductivity, W/m-K 28
13
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.0
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 6.3
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 29
33
Density, g/cm3 8.6
8.1
Embodied Carbon, kg CO2/kg material 2.7
6.2
Embodied Energy, MJ/kg 44
84
Embodied Water, L/kg 310
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 93
250
Resilience: Unit (Modulus of Resilience), kJ/m3 130
280
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 12
23
Strength to Weight: Bending, points 14
21
Thermal Diffusivity, mm2/s 8.0
3.5
Thermal Shock Resistance, points 14
15

Alloy Composition

Aluminum (Al), % 0 to 1.5
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 89 to 99
0.8 to 1.5
Iron (Fe), % 0 to 2.5
42.7 to 50.1
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 0 to 1.5
0 to 1.0
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 0
24 to 26
Nitrogen (N), % 0
0.1 to 0.2
Phosphorus (P), % 0 to 0.5
0 to 0.045
Silicon (Si), % 1.0 to 5.0
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 1.0
0
Zinc (Zn), % 0 to 5.0
0