MakeItFrom.com
Menu (ESC)

C87500 Brass vs. AWS E409Nb

C87500 brass belongs to the copper alloys classification, while AWS E409Nb belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C87500 brass and the bottom bar is AWS E409Nb.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 18
23
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
76
Tensile Strength: Ultimate (UTS), MPa 460
500
Tensile Strength: Yield (Proof), MPa 190
380

Thermal Properties

Latent Heat of Fusion, J/g 260
280
Melting Completion (Liquidus), °C 920
1460
Melting Onset (Solidus), °C 820
1410
Specific Heat Capacity, J/kg-K 410
480
Thermal Conductivity, W/m-K 28
25
Thermal Expansion, µm/m-K 18
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.7
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 27
13
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.9
Embodied Energy, MJ/kg 44
42
Embodied Water, L/kg 300
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 67
110
Resilience: Unit (Modulus of Resilience), kJ/m3 160
380
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 16
18
Strength to Weight: Bending, points 16
18
Thermal Diffusivity, mm2/s 8.3
6.8
Thermal Shock Resistance, points 17
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.5
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
11 to 14
Copper (Cu), % 79 to 85
0 to 0.75
Iron (Fe), % 0
80.2 to 88.5
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0
0 to 0.6
Niobium (Nb), % 0
0.5 to 1.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 3.0 to 5.0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 12 to 16
0
Residuals, % 0 to 0.5
0