MakeItFrom.com
Menu (ESC)

C87600 Bronze vs. EN 1.4008 Stainless Steel

C87600 bronze belongs to the copper alloys classification, while EN 1.4008 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C87600 bronze and the bottom bar is EN 1.4008 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 18
17
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
76
Tensile Strength: Ultimate (UTS), MPa 470
670
Tensile Strength: Yield (Proof), MPa 230
500

Thermal Properties

Latent Heat of Fusion, J/g 280
280
Maximum Temperature: Mechanical, °C 190
760
Melting Completion (Liquidus), °C 970
1450
Melting Onset (Solidus), °C 860
1400
Specific Heat Capacity, J/kg-K 410
480
Thermal Conductivity, W/m-K 28
25
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.0
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 6.4
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 29
8.0
Density, g/cm3 8.5
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.1
Embodied Energy, MJ/kg 43
30
Embodied Water, L/kg 300
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71
100
Resilience: Unit (Modulus of Resilience), kJ/m3 240
630
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 16
24
Strength to Weight: Bending, points 16
22
Thermal Diffusivity, mm2/s 8.1
6.7
Thermal Shock Resistance, points 17
23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
12 to 13.5
Copper (Cu), % 88 to 92.5
0
Iron (Fe), % 0
81.8 to 86.8
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0.2 to 0.5
Nickel (Ni), % 0
1.0 to 2.0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 3.5 to 5.5
0 to 1.0
Sulfur (S), % 0
0 to 0.025
Zinc (Zn), % 4.0 to 7.0
0
Residuals, % 0 to 0.5
0