MakeItFrom.com
Menu (ESC)

C87600 Bronze vs. C94900 Bronze

Both C87600 bronze and C94900 bronze are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 86% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C87600 bronze and the bottom bar is C94900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 18
17
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 42
41
Tensile Strength: Ultimate (UTS), MPa 470
300
Tensile Strength: Yield (Proof), MPa 230
130

Thermal Properties

Latent Heat of Fusion, J/g 280
190
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 970
980
Melting Onset (Solidus), °C 860
910
Specific Heat Capacity, J/kg-K 410
370
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.0
14
Electrical Conductivity: Equal Weight (Specific), % IACS 6.4
14

Otherwise Unclassified Properties

Base Metal Price, % relative 29
32
Density, g/cm3 8.5
8.8
Embodied Carbon, kg CO2/kg material 2.7
3.4
Embodied Energy, MJ/kg 43
55
Embodied Water, L/kg 300
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71
41
Resilience: Unit (Modulus of Resilience), kJ/m3 240
72
Stiffness to Weight: Axial, points 7.4
6.9
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 16
9.4
Strength to Weight: Bending, points 16
11
Thermal Shock Resistance, points 17
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Copper (Cu), % 88 to 92.5
79 to 81
Iron (Fe), % 0
0 to 0.3
Lead (Pb), % 0 to 0.5
4.0 to 6.0
Manganese (Mn), % 0
0 to 0.1
Nickel (Ni), % 0
4.0 to 6.0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 3.5 to 5.5
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
4.0 to 6.0
Zinc (Zn), % 4.0 to 7.0
4.0 to 6.0
Residuals, % 0 to 0.5
0 to 0.8