MakeItFrom.com
Menu (ESC)

C87800 Brass vs. S43037 Stainless Steel

C87800 brass belongs to the copper alloys classification, while S43037 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C87800 brass and the bottom bar is S43037 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 25
25
Poisson's Ratio 0.33
0.28
Rockwell B Hardness 86
77
Shear Modulus, GPa 42
77
Tensile Strength: Ultimate (UTS), MPa 590
410
Tensile Strength: Yield (Proof), MPa 350
230

Thermal Properties

Latent Heat of Fusion, J/g 260
280
Maximum Temperature: Mechanical, °C 170
880
Melting Completion (Liquidus), °C 920
1440
Melting Onset (Solidus), °C 820
1400
Specific Heat Capacity, J/kg-K 410
480
Thermal Conductivity, W/m-K 28
25
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.7
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 27
9.0
Density, g/cm3 8.3
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.3
Embodied Energy, MJ/kg 44
32
Embodied Water, L/kg 300
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
88
Resilience: Unit (Modulus of Resilience), kJ/m3 540
130
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 20
15
Strength to Weight: Bending, points 19
16
Thermal Diffusivity, mm2/s 8.3
6.7
Thermal Shock Resistance, points 21
14

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16 to 19
Copper (Cu), % 80 to 84.2
0
Iron (Fe), % 0 to 0.15
77.9 to 83.9
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.15
0 to 1.0
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.010
0 to 0.040
Silicon (Si), % 3.8 to 4.2
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.030
Tin (Sn), % 0 to 0.25
0
Titanium (Ti), % 0
0.1 to 1.0
Zinc (Zn), % 12 to 16
0
Residuals, % 0 to 0.5
0