MakeItFrom.com
Menu (ESC)

C90200 Bronze vs. AISI 446 Stainless Steel

C90200 bronze belongs to the copper alloys classification, while AISI 446 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C90200 bronze and the bottom bar is AISI 446 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
190
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 30
23
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 41
79
Tensile Strength: Ultimate (UTS), MPa 260
570
Tensile Strength: Yield (Proof), MPa 110
300

Thermal Properties

Latent Heat of Fusion, J/g 200
290
Maximum Temperature: Mechanical, °C 180
1180
Melting Completion (Liquidus), °C 1050
1510
Melting Onset (Solidus), °C 880
1430
Specific Heat Capacity, J/kg-K 370
490
Thermal Conductivity, W/m-K 62
17
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 13
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 34
12
Density, g/cm3 8.8
7.7
Embodied Carbon, kg CO2/kg material 3.3
2.4
Embodied Energy, MJ/kg 53
35
Embodied Water, L/kg 370
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63
110
Resilience: Unit (Modulus of Resilience), kJ/m3 55
230
Stiffness to Weight: Axial, points 7.0
15
Stiffness to Weight: Bending, points 18
26
Strength to Weight: Axial, points 8.3
21
Strength to Weight: Bending, points 10
20
Thermal Diffusivity, mm2/s 19
4.6
Thermal Shock Resistance, points 9.5
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0
23 to 27
Copper (Cu), % 91 to 94
0
Iron (Fe), % 0 to 0.2
69.2 to 77
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0 to 0.5
0 to 0.75
Nitrogen (N), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.050
0 to 0.040
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.030
Tin (Sn), % 6.0 to 8.0
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.6
0