MakeItFrom.com
Menu (ESC)

C90500 Gun Metal vs. AISI 414 Stainless Steel

C90500 gun metal belongs to the copper alloys classification, while AISI 414 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C90500 gun metal and the bottom bar is AISI 414 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 20
17
Fatigue Strength, MPa 90
430 to 480
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 320
900 to 960
Tensile Strength: Yield (Proof), MPa 160
700 to 790

Thermal Properties

Latent Heat of Fusion, J/g 190
280
Maximum Temperature: Mechanical, °C 170
750
Melting Completion (Liquidus), °C 1000
1440
Melting Onset (Solidus), °C 850
1400
Specific Heat Capacity, J/kg-K 370
480
Thermal Conductivity, W/m-K 75
25
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 11
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 35
8.0
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 3.6
2.1
Embodied Energy, MJ/kg 59
29
Embodied Water, L/kg 390
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
140 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 110
1260 to 1590
Stiffness to Weight: Axial, points 6.9
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 10
32 to 34
Strength to Weight: Bending, points 12
27 to 28
Thermal Diffusivity, mm2/s 23
6.7
Thermal Shock Resistance, points 12
33 to 35

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
11.5 to 13.5
Copper (Cu), % 86 to 89
0
Iron (Fe), % 0 to 0.2
81.8 to 87.3
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0 to 1.0
1.3 to 2.5
Phosphorus (P), % 0 to 1.5
0 to 0.040
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.030
Tin (Sn), % 9.0 to 11
0
Zinc (Zn), % 1.0 to 3.0
0
Residuals, % 0 to 0.3
0