MakeItFrom.com
Menu (ESC)

C90700 Bronze vs. EN 1.0034 Steel

C90700 bronze belongs to the copper alloys classification, while EN 1.0034 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C90700 bronze and the bottom bar is EN 1.0034 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 90
97 to 110
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 12
9.0 to 32
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 330
340 to 380
Tensile Strength: Yield (Proof), MPa 180
180 to 280

Thermal Properties

Latent Heat of Fusion, J/g 190
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 1000
1460
Melting Onset (Solidus), °C 830
1420
Specific Heat Capacity, J/kg-K 370
470
Thermal Conductivity, W/m-K 71
53
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 10
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 35
1.8
Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 3.7
1.4
Embodied Energy, MJ/kg 60
18
Embodied Water, L/kg 390
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 34
31 to 95
Resilience: Unit (Modulus of Resilience), kJ/m3 150
84 to 210
Stiffness to Weight: Axial, points 6.9
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 10
12 to 13
Strength to Weight: Bending, points 12
14 to 15
Thermal Diffusivity, mm2/s 22
14
Thermal Shock Resistance, points 12
11 to 12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.15
Copper (Cu), % 88 to 90
0
Iron (Fe), % 0 to 0.15
98.7 to 100
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 0
0 to 0.7
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0 to 1.5
0 to 0.045
Silicon (Si), % 0 to 0.0050
0 to 0.35
Sulfur (S), % 0 to 0.050
0 to 0.045
Tin (Sn), % 10 to 12
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.6
0