MakeItFrom.com
Menu (ESC)

C90700 Bronze vs. C94900 Bronze

Both C90700 bronze and C94900 bronze are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 86% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C90700 bronze and the bottom bar is C94900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 12
17
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 40
41
Tensile Strength: Ultimate (UTS), MPa 330
300
Tensile Strength: Yield (Proof), MPa 180
130

Thermal Properties

Latent Heat of Fusion, J/g 190
190
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 1000
980
Melting Onset (Solidus), °C 830
910
Specific Heat Capacity, J/kg-K 370
370
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
14
Electrical Conductivity: Equal Weight (Specific), % IACS 10
14

Otherwise Unclassified Properties

Base Metal Price, % relative 35
32
Density, g/cm3 8.7
8.8
Embodied Carbon, kg CO2/kg material 3.7
3.4
Embodied Energy, MJ/kg 60
55
Embodied Water, L/kg 390
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 34
41
Resilience: Unit (Modulus of Resilience), kJ/m3 150
72
Stiffness to Weight: Axial, points 6.9
6.9
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 10
9.4
Strength to Weight: Bending, points 12
11
Thermal Shock Resistance, points 12
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0 to 0.0050
Antimony (Sb), % 0 to 0.2
0 to 0.25
Copper (Cu), % 88 to 90
79 to 81
Iron (Fe), % 0 to 0.15
0 to 0.3
Lead (Pb), % 0 to 0.5
4.0 to 6.0
Manganese (Mn), % 0
0 to 0.1
Nickel (Ni), % 0 to 0.5
4.0 to 6.0
Phosphorus (P), % 0 to 1.5
0 to 0.050
Silicon (Si), % 0 to 0.0050
0 to 0.0050
Sulfur (S), % 0 to 0.050
0 to 0.080
Tin (Sn), % 10 to 12
4.0 to 6.0
Zinc (Zn), % 0 to 0.5
4.0 to 6.0
Residuals, % 0 to 0.6
0 to 0.8