MakeItFrom.com
Menu (ESC)

C90900 Bronze vs. AISI 446 Stainless Steel

C90900 bronze belongs to the copper alloys classification, while AISI 446 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C90900 bronze and the bottom bar is AISI 446 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 90
190
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 15
23
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 40
79
Tensile Strength: Ultimate (UTS), MPa 280
570
Tensile Strength: Yield (Proof), MPa 140
300

Thermal Properties

Latent Heat of Fusion, J/g 190
290
Maximum Temperature: Mechanical, °C 160
1180
Melting Completion (Liquidus), °C 980
1510
Melting Onset (Solidus), °C 820
1430
Specific Heat Capacity, J/kg-K 360
490
Thermal Conductivity, W/m-K 65
17
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 11
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 36
12
Density, g/cm3 8.7
7.7
Embodied Carbon, kg CO2/kg material 3.9
2.4
Embodied Energy, MJ/kg 64
35
Embodied Water, L/kg 410
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35
110
Resilience: Unit (Modulus of Resilience), kJ/m3 89
230
Stiffness to Weight: Axial, points 6.8
15
Stiffness to Weight: Bending, points 18
26
Strength to Weight: Axial, points 8.8
21
Strength to Weight: Bending, points 11
20
Thermal Diffusivity, mm2/s 21
4.6
Thermal Shock Resistance, points 10
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0
23 to 27
Copper (Cu), % 86 to 89
0
Iron (Fe), % 0 to 0.15
69.2 to 77
Lead (Pb), % 0 to 0.25
0
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0 to 0.5
0 to 0.75
Nitrogen (N), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.050
0 to 0.040
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.030
Tin (Sn), % 12 to 14
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.6
0