MakeItFrom.com
Menu (ESC)

C91300 Bell Metal vs. EN 1.4511 Stainless Steel

C91300 bell metal belongs to the copper alloys classification, while EN 1.4511 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C91300 bell metal and the bottom bar is EN 1.4511 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 0.5
25
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 38
77
Tensile Strength: Ultimate (UTS), MPa 240
510
Tensile Strength: Yield (Proof), MPa 210
260

Thermal Properties

Latent Heat of Fusion, J/g 180
280
Maximum Temperature: Mechanical, °C 150
870
Melting Completion (Liquidus), °C 890
1440
Melting Onset (Solidus), °C 820
1400
Specific Heat Capacity, J/kg-K 360
480
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 7.4
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 39
11
Density, g/cm3 8.6
7.7
Embodied Carbon, kg CO2/kg material 4.5
2.5
Embodied Energy, MJ/kg 74
37
Embodied Water, L/kg 460
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.1
110
Resilience: Unit (Modulus of Resilience), kJ/m3 210
170
Stiffness to Weight: Axial, points 6.6
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 7.8
18
Strength to Weight: Bending, points 10
18
Thermal Shock Resistance, points 9.3
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 79 to 82
0
Iron (Fe), % 0 to 0.25
78.9 to 84
Lead (Pb), % 0 to 0.25
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0 to 0.5
0
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0 to 1.5
0 to 0.040
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.015
Tin (Sn), % 18 to 20
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.6
0