MakeItFrom.com
Menu (ESC)

C92200 Bronze vs. Grade 24 Titanium

C92200 bronze belongs to the copper alloys classification, while grade 24 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C92200 bronze and the bottom bar is grade 24 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 25
11
Fatigue Strength, MPa 76
550
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 41
40
Tensile Strength: Ultimate (UTS), MPa 280
1010
Tensile Strength: Yield (Proof), MPa 140
940

Thermal Properties

Latent Heat of Fusion, J/g 190
410
Maximum Temperature: Mechanical, °C 170
340
Melting Completion (Liquidus), °C 990
1610
Melting Onset (Solidus), °C 830
1560
Specific Heat Capacity, J/kg-K 370
560
Thermal Conductivity, W/m-K 70
7.1
Thermal Expansion, µm/m-K 19
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 14
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 14
2.0

Otherwise Unclassified Properties

Density, g/cm3 8.7
4.5
Embodied Carbon, kg CO2/kg material 3.2
43
Embodied Energy, MJ/kg 52
710
Embodied Water, L/kg 360
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 58
110
Resilience: Unit (Modulus of Resilience), kJ/m3 87
4160
Stiffness to Weight: Axial, points 6.9
13
Stiffness to Weight: Bending, points 18
35
Strength to Weight: Axial, points 8.9
63
Strength to Weight: Bending, points 11
50
Thermal Diffusivity, mm2/s 21
2.9
Thermal Shock Resistance, points 9.9
72

Alloy Composition

Aluminum (Al), % 0 to 0.0050
5.5 to 6.8
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 86 to 90
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.25
0 to 0.4
Lead (Pb), % 1.0 to 2.0
0
Nickel (Ni), % 0 to 1.0
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 1.5
0
Silicon (Si), % 0 to 0.0050
0
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 5.5 to 6.5
0
Titanium (Ti), % 0
87.5 to 91
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 3.0 to 5.0
0
Residuals, % 0
0 to 0.4